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The Lossy Waveguide as a Problem in
Perturbation Theory

JAMES L. ANDERSON

Abstract — A systematic perturbation theory for lossy waveguides is
presented. Two possible small dimensionless parameters are identified and
introduced into Maxwell’s equations by rescaling pursuant to effecting an
expansion of the fields in these parameters.

I. INTRODUCTION

Very few waveguide problems can be solved exactly if the
guide walls are taken to have finite conductivity. As a conse-
quence, some approximation procedure is needed to obtain the
dispersion relation for this type of guide. Most treatments do not,
however, present a systematic scheme for effecting such an ap-
proximation [1}-[4]. (In [1] elements of such a scheme are sug-
gested.) Several are heuristic while others involve formal expan-
sions in a parameter that is then set equal to unity. In addition,
no attempt is made to identify small dimensionless parameters
associated with the guide so that in general one cannot easily
assess the effectiveness of these treatments.

Perturbation theory for a lossy waveguide is more complicated
than standard perturbation theory. The latter treatment involves
a straightforward expansion in some small parameter that ap-
pears explicitly in the equation or equations one wishes to solve.
In the case of a waveguide there are no immediately evident small
parameters appearing in the Maxwell equations that one uses to
determine the fields in the guide and its walls. They arise only
after one has identified the small dimensionless parameters that
are associated with the guide in question and one has rescaled the
coordinates appearing in these equations. As we will see, both
these steps require some thought concerning the properties of the
guide.

II. PHysiCAL CONSIDERATIONS

The physical considerations that lead to the construction of
small dimensionless parameters involve the cross-sectional di-
mensions of the guide, which we characterize by L, the smallest
of these dimensions, the skin depth 8 and conductivity ¢ in the
walls, and the angular frequency w of the wave in the guide. The
skin depth is given by

2

w0

M

where p, is the magnetic permeability of the wall. (We use SI
units throughout.) In a typical guide, L will be much larger than
J; hence one small parameter we can form is €, = 8 /L. If indeed
€, is small compared to unity, then we can expect that changes in
the field in a wall in a direction normal to its surface will be large
compared to changes parallel to this surface.

A possible second small parameter involves the ratio of w to o.
This is the ratio of the charge relaxation time in the conductor to
the period of oscillation in the guide and is also small in a typical
guide. In what follows we will take our second small parameter to
be ¢, =‘/€Lw /o, where ¢, is the dielectric constant in the wall.
Note that both ¢, and ¢, are dimensionless; hence it makes sense
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to say that they are small compared 10 unity. While in principle
neither parameter need be small, in practice they always are.
III. MAXWELL’S EQUATIONS AND BOUNDARY CONDITIONS

Three of Maxwell’s equations have the same form in the guide
and in its walls. They are

v-D=0 (2a)
v-D'=0 (2b)
v-B=0 (3a)
v-B°=0 (3b)
and
vXE+9,B=0 (4a)
Vv XE°+,B =0 (4b)

where the superscript ¢ refers to the conductor and where J, is
short for 8 /d1. The fourth Maxwell equation in the guide has the
form

VXH—-9D=0 (5a)
while in the walls it has the form
V X H¢ — 3,D° = oE* (5b)

where we have used Ohm’s law in the form J=oE.

As they stand, these equations do not involve either ¢ or ¢,
explicitly. However, if we assume a time dependence for the
fields of the form e/“’, (5b) can be rewritten as

v X H =0(1+ j&)E*

which does exhibit an explicit depenclence on ¢,.

Exhibiting a dependence on ¢ requires more work and in-
volves recognizing that spatial changes in the fields in the con-
ductor in a direction normal to its surface occur on a scale 8
while those in directions parallel to this surface change on a scale
L. To make explicit this observation we decompose ¥ into a part
that is normal and a part that is parallel to the conductor’s
surface according to

(6)

(M

where n is the normal to the wall surface and points into the
guide while £ increases into the wall and where n-v, = 0. (Since
by assumption, ¢ <1 we can neglect curvature effects in our
treatment.) In a like manner we can decompose the fields in the
wall into normal and parallel components according to

E‘=nE, +Ej

‘v=—n8€+V”

(®)
and similarly for B¢, Using these decompositions and keeping in

mind the assumed time dependence of the fields, (4b) and (6) can
be put into the forms

—nX ES +v, X(Efn+Ef) = — jo(Bn+ B)

®)
and
—nX 3H; +vy X(Hen+ Hi) =o(1+ j3)(Ecn+ Ef). (10)

We now make the assumption that the fields in the walls
depends on £ and on %, the coordinates parallel to the wall
surface, through the combinations £ /8 and 7 /L. This assump-
tion formalizes the statement that changes normal to the wall are
large compared to those parallel to it if /L < 1. Thus the fields
can be considered to be functions of new coordinates &= £/8
and % =7/L. Derivatives with respect to these “hatted” vari-
ables will therefore not change the order of magnitude of a
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function as far as its dependence on ¢ and ¢, is concerned. In
terms of these “stretched” coordinates, (9) and (10) take the
forms
—n X JEf + eV X (En+Ef) = — j\/2p. /¢ e;( Hin+ H)
(11)
and
—n X 9gH{ + e, x( Hn+ Hf)

1
=/2¢./n. (—(1+ jeNEn+E). (12)

From (12) it follows by equating parallel components that, in
lowest approximation,

1
—nX Hf =\2¢,/n, &

We see from this equation that if Hj=0(1), then Ej=0(e¢,),
where O denotes the standard order symbol. It also follows from
(12) by equating normal components that E, = O(ee,). By
equating parallel components of (11) it next follows that

(13)

~nX0E =~ jy2u. /e - Hj. (14)
And finally it follows again from (11) that Hf = O(e; /&) Ef =
O(¢,). These results allow us to determine the starting point in a
double expansion in €, and €, of the fields in the walls of the
guide. The continuity in H), E, and B at the wall boundaries
then allows us to determine the starting points for the expansions
of these fields in the guide.

In order to determine these boundary fields we combine (13)
and (14) to obtain

2yFe syye
9FH; = ~2 jH. (15)
This equation has as its solution
Hj = Hyje™ ¢ (16)

where Hy is the value of H| at the boundary of the conductor.
Because of the continuity in H|, it follows that H, = Hg,. Hence
H| can be determined from a knowledge of H| in the guide.
From (14) it next follows that

Ef = (1+ jWr./2¢ e;(n X H). 17)

We can now use this result and the continuity in E, to determine
the boundary condition on this quantity in the guide.

IV. GUuUIDE FIELDS AND DISPERSION RELATIONS

In a guide with walls of infinite conductivity the dispersion
relation between wavenumber k and frequency « is gotten by
solving a two-dimensional Helmholtz equation. Boundary condi-
tions on the walls of the guide appropriate for TM and TE modes
lead to an eigenvalue problem which gives the desired dispersion
relation. These boundary conditions are obtained from the conti-
nuity conditions at the walls plus the requirement that all fields
vanish in the conductor. In the case of finite conductivity this is
no longer the case and we must use the results of the previous
section to obtain the appropriate conditions. To see how these
latter conditions lead to a dispersion relation we will consider the
case of TM modes in a cylindrical guide with the axis in the z
direction.
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The basic field in such a guide is ¥ = E_, and it satisfies the
equation

(vi+y*)y=0 (18)

where VZ2=¢2—- 082 and y>=pew? — k% and where we have
assumed the z dependence for the fields to be ¢ /%>, In the
infinite conductivity case the boundary condition is ¢ = 0 on the
walls. From (17) and the continuity in E,, it follows that i, is no
longer zero in the finite conductivity case but rather is given by

Vo= Eo. = (1+ j) /i /2, &,(n X Hy) _. (19)
One can now use Maxwell’s equations in the guide to relate
n X Hy to vy (see e.g. [1] for details) to obtain the result
2

k
1+ —2) dedo. (20)
Y

1op .
4’0:5‘1_(1“])
il

The form of this boundary condition suggests that, at least in
the lowest level of approximation, we take

P =0 +€1¢(1) 4o

(21)
and

Y=Y(0)+€1.Y(1)+

(22)
When these expansions are substituted into (18) and (20) and the
coefficients of powers of ¢; equated, we obtain the equations

(V% " ,Y(O)l) YO =0 yP =0 (23)
and
(V% + Y(())Z) 4/(1) +2.Y(0)Y(1)¢(0) = ()
Tp ()’
W= (2] a-naw @o
2 p\owy

where w, is the cutoff frequency of the unperturbed mode. We
see that equations (23) are just those for the infinite conductivity
case; hence we can conclude that the infinite conductivity result
is indeed a good first approximation to the exact result.

In order to solve equations (24) for ¢V we need to know y®.
We can calculate this quantity by making use of Green’s theorem
in two dimensions:

[loviv—vviy] da=Plvoo—soulda  (29)
A C

where the line integral is around the curve C bounding the area
A, which, in our case, we take to be the cross section of the guide.
Let us now take, in this equation, ¢ =y, where * denotes
complex conjugate. It then follows from (18) and (23) and the
fact that Y19 vanishes on C that

(26)

If we now substitute our expansions (21) and (22) into this
equation we obtain the final result that

gSC |0,60 al
_ J)_____
[ 190 da
A

which determines ¥V in terms of quantities found in the zeroth
approximation and agrees with the result found in [1].

02 _ 2 (0), — (*
(v y)fop Y da gﬁcwnxp di.

1({ w)\?
_2Y(0)Y(1)=E(w_) (1
0

(27)
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For most practical purposes it is sufficient to determine y to
this order of accuracy in order to calculate the attenuation in the
guide. If necessary, however, we can substitute this result back
into (24) in order to determine YV and so calculate the fields in
the guide to O(¢;). These fields then supply boundary conditions
via the continuity equations for the calculation of the next
approximation to the fields in the conductor, which in turn can
be used as boundary conditions for the determination of the next
approximation to the fields in the guide, and so on. In carrying
out this procedure the proper ordering of terms will be automatic
with the field equations in the form given here.

V. SuMMARY

A consistent approximation scheme for lossy waveguides has
been developed which can, in a straightforward manner, be
extended to any order of accuracy desired. Although two small
parameters are involved in the expansion of the fields in the
guide and its walls, the field equations are shown to force the
correct ordering of parameters in this expansion.
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Expansions for the Capacitance of a Cross Concentric
with a Circle with an Application

HENRY J. RIBLET, LIFE FELLOW, IEEE

Abstract —Expansions are given for the capacitance per unit length for
the geometry having a cross section in which an equiarmed cross is
concentric with an external circle.

1. INTRODUCTION

Oberhettinger and Magnus [1, p. 61] have considered the
problem of determining the capacitance of a coaxial structure
whose outer conductor has a circular cross section while the cross
section of the inner conductor is a line through the axis. The
problem considered here differs in that the inner conductor has a
cross section which is a symmetric cross centered on the axis of
the outer circular conductor as shown in the z plane of Fig. 1

The transformation

1 1
t= 2 (z + B )

maps the upper left-hand quadrant of the circle in the z plane
onto the upper right-hand quadrant of the ¢ plane of Fig. 1. Here
corresponding points on the boundaries of the two regions are
given the same alphabetical name. Then the upper right-hand

M
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quadrant of the 7 plane is mapped onto the upper half of the w
plane by the transformation

w=1? ) (2)

Here again, the same letter is used to denote corresponding
points. The capacitance C, of the coaxial structure is four times
the capacitance, in the upper half w plane, between the line
segment fa and the infinite line segment, bg. This capacitance,
C, is given by the well-known formula [2, p. 58]

K(k)
TK(k)

(3)
where, in our case,

_(a—f)(g—b)

RO “
Finally,
K(K)

In this paper, two series for C;, one in terms of § and the other
in terms of p =1— §, are given which have certain theoretical and
practical advantages. Not only do the series give the limiting
behavior of C, as § approaches 0 or 1 but they permit the direct
calculation of G, with sufficient accuracy for most engineering
applications without any resort to elliptic functions.

II. ANALYSIS

If the values for a, b, f, and g, given in the w plane of Fig. 1,
are substituted in (4), it is found that
88%(1+8*
e ‘4’2 (6)
(1+8)

The values of (, given in the middle row of Table I were
obtained by finding k? from (6), for the given values of §, and
then calculating the complete elliptic integrals, K and K’ of (5),
using Landen’s transformation. To obtain an expansion for G, in
terms of &, one may expand (6) in terms of 8% to get

k?=882(1—48% +118% —248¢+458% —76810+ ---) (7)
and then substitute in

LSO Y I UM PSSR I
ety — — 2, + e
i ( * 16384

K K22 327 9
so that finally

K ma-2me— L By By T g
g o _8( 3% T 1634 '
(9

Determining the coefficent of §°2 in (9) in this way requires the
coefficents in (8) up to the coefficent of k32. Those not given in
[3, p. 1219] are provided in the Appendix.

In order to find the expansion for C, in powers of p, find k’?
from (6) and replace 8 with 1—p. Then

1-p/2
1-p+p>/2

k/l — p4

(10)

0018-9480,/89,/1100-1821$01.00 ©1989 IEEE



