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The Lossy Waveguide as a Problem in

Perturbation Theory

JAMES L. ANDERSON

Abstract —A systematic perturbation theory for lossy wavegreides is

presented. Two possible small dimensionless parameters are identified and

introduced into Maxwell’s equations by resealing pursuant to effecting an

expansion of the fields in these parameters.

I. INTRODUCTION

Very few waveguide problems can be solved exactly if the

guide walls are taken to have finite conductivity. As a conse-

quence, some approximation procedure is needed to obtain the

dispersion relation for this type of guide. Most treatments do not,

however, present a systematic scheme for effecting such an ap-

proximation [1]–[4]. (In [1] elements of such a scheme are sug-

gested.) Several are heuristic while others involve formal expan-

sions in a parameter that is then set equal to unity. In addition,

no attempt is made to identify small dimensionless parameters

associated with the guide so that in general one cannot easily

assess the effectiveness of these treatments.

Perturbation theory for a lossy waveguide is more complicated

than standard perturbation theory. The latter treatment involves

a straightforward expansion in some small parameter that ap-

pears explicitly in the equation or equations one wishes to solve.

In the case of a waveguide there are no immediately evident small

parameters appearing in the Maxwell equations that one uses to

determine the fields in the guide and its walls. They arise only

titer one has identified the small dimensionless parameters that

are associated with the guide in question and one has resealed the

coordinates appearing in these equations. As we will see, both

these steps require some thought concerning the properties of the

guide.

II. PHYSICAL CONSIDERATIONS

The physical considerations that lead to the construction of
small dimensionless parameters involve the cross-sectional di-

mensions of the guide, which we characterize by L, the smallest
of these dimensions, the skin depth 8 and conductivity u in the
walls, and the angular frequency a of the wave in the guide. The
skin depth is given by

r

2
8= — (1)

lJc@u

where PC is the magnetic permeability of the wall. (We use S1
units throughout.) In a typical guide, L will be much larger than
8; hence one small parameter we can form is q = 8/L. If indeed

q is small compared to unity, then we can expect that changes in

the field in a wall in a direction norrmd to its surface will be large

compared to changes parallel to this surface.

A possible second small parameter involves the ratio of ~ to cr.

This is the ratio of the charge relaxation time in the conductor to

the period of oscillation in the guide and is also small in a typical

guide. In what follows we will take our second smalf parameter to

be Ez =~~, where cc is the dielectric constant in the wall.

Note that both Cl and C2 are dimensionless; hence it makes sense
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to say that they are small compared to unity. While in principle

neither parameter need be small, in practice they always are.

III. MAXWEL]L’S EQUATIONS AND BOUNDARY CONDITIONS

Three of Maxwell’s equations have the same form in the guide

and in its walls. They are

v.D=O (2a)

v.D~=O (2b)

v.B=O (3a)

v.B~=() (3b)

and

VxE+dtB=O (4a)

vxEc+8,B(”=0 (4b)

where the superscript c refers to the conductor and where 611is

short for d/r? t. The fourth Maxwell equation in the guide has the

form

VXH–il,D=O (5a)

while in the walls it has the form

v x H’ – 8,DC = GE’ (5b)

where we have used Ohm’s law in the form J = uE.
As they stand, these equations do not involve either c1 or ~z

explicitly. However, if we assume a time dependence for the

fields of the form e@’, (5b) can be rewritten as

VxHC=u(l+jc~)EC (6)

which does exhibit an explicit dependence on Cz.

Exhibiting a dependence on c1 requires more work and in-

volves recognizing that spatial changes in the fields in the con-

ductor in a direction normal to its surface occur on a scale 8

while those in directions parallel to this surface change on a scale

L. To make explicit this observation we decompose v into a part

that is normal and a part that is parallel to the conductor’s

surface according to

V=–nat+vll (7)

where n is the normal to the wall surface and points into the

guide while .$ increases into the wall and where n v,, = O. (Since

by assumption, c1 <<1 we can neglect curvature effects in our

treatment.) In a like manner we can decompose the fields in~ the

wall into normal and parallel components according to

‘c = @~ + -% (8)

and similarly for B’. Using these decompositions and keeping in

mind the assumed time dependence clf the fields, (4b) and (6) can

be put into the forms

–nx8g~f+vll x( E~n+Ej) =–jo(~fn+B~) (9)

and

–nx6’gH; +v,lx(H:n+H~) =u(l+jt~)(E1n+ E{). (10)

We now make the assumption that the fields in the walls

depends on $ and on q, the coordinates parallel to the wall

surface, through the combinations $/8 and q/L. This assump-
tion formalizes the statement that changes normal to the wall are

large compared to those parallel to it if i3/L <<1. Thus the fields

can be considered to be functions of new coordinates ~= ~/8

and $j = q/L. Derivatives with respect to these “hatted” vari-

ables will therefore not change the order of magnitude of a
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function as far as its dependence on c1 and C2 is concerned. In

terms of these ‘<stretched” coordinates, (9) and (10) take the

forms

–nXd$E~ +el~ll X( E;n+E~) =–J/mc2(~f~+~~)

(11)

and

– n x agH~ + cl+,, x(~:~ + qf)

=Jm::(l+jc:)(E: n+Ei). (12)

From (12) it follows by equating parallel components that, in

lowest approximation,

r’
–n X dfH~ = 2~,/PC ;Ei. (13)

We see from this equation that if Hi= 0(1), then Ef = 0(<2),
where O denotes the standard order symbol. It also follows from

(12) by equating normaf components that El = 0(t1c2). By

equating parallel components of (11) it next follows that

— n x d[E~ = – j~mczH~. (14)

And finally it follows again from (11) that H: = 0(~1/cZ) E~ =

O(cl). These results allow us to determine the starting point in a

double expansion in c1 and C2 of the fields in the walls of the

guide. The continuity in H,,, E,l, and B~ at the wall boundaries

then allows us to determine the starting points for the expansions

of these fields in the guide.

In order to determine these boundary fields we combine (13)

and (14) to obtain

6’~H~= – 2jH~. (15)

This equation has as its solution

Hi = H~lle-(l+j)f (16)

where Ho,, is the value of H( at the boundary of the conductor.

Because of the continuity in HI, itfollows that Ho,, = Hfil. Hence

Hi can be determined from a knowledge of H,, in the guide.

From (14) it next follows that

E~’=(l+j)~~f2(nX~~). (17)

We can now use this result and the continuity in El, to determine

the boundary condition on this quantity in the guide.

IV. GUIDE FIELDS AND DISPERSION RELATIONS

In a guide with walls of infinite conductivity the dispersion

relation between wavenumber k and frequency u is gotten by

solving a two-dimensional Helmholtz equation. Boundary condi-

tions on the walls of the guide appropriate for TM and TE modes

lead to an eigenvalue problem which gives the desired dispersion

relation. These boundary conditions are obtained from the conti-

nuity conditions at the walls plus the requirement that all fields

vanish in the conductor. In the case of finite conductivity this is

no longer the case and we must use the results of the previous

section to obtain the appropriate conditions. To see how these

latter conditions lead to a dispersion relation we will consider the

case of TM modes in a cylindrical guide with the axis in the z

direction.

The basic field in such a guide is ~ = E=, and it satisfies the

equation

(V; +yz)+=o (18)

where V; = v 2 — i?; and yz = pcux – kz and where we have

assumed the z dependence for the fields to be e–l~=. In the

infinite conductivity case the boundary condition is $ = O on the

walls. From (17) and the continuity in E:, itfollows that *O is no

longer zero in the finite conductivity case but rather is given by

+o=~o==(l+j)Jm~2(~x~ol\),. (19)

One can now use Maxwell’s equations in the guide to relate

n x H,l to VT+ (see e.g. [1] for details) to obtain the result

(20)

The form of this boundary condition suggests that, at least in

the lowest level of approximation, we take

+ = +(0)+,,+(1)+ . . . (21)

and

~=y(o)+cly(u+ ..., (22)

When these expansions are substituted into (18) and (20) and the

coefficients of powers of c1 equated, we obtain the equations

(v; + ~(o)z) +(0) = o +$0)=() (23)

and

(v; + y(o)’) +(’) +2 Y(QY(’)*(”) = 0

where a, is the cutoff frequency of the unperturbed mode. We

see that equations (23) are just those for the infinite conductivity

case; hence we can conclude that the infinite conductivity result

is indeed a good first approximation to the exact result.

In order to solve equations (24) for @) we need to know y(l).

We can calculate this quantity by making use of Green’s theorem

in two dimensions:

J [Ov;+ - w:+] ~a=j[w.+-+%+] dl (29
A c

where the line integral is around the curve C bounding the area

A, which, in our case, we take to be the cross section of the guide.

Let us now take, in this equation, @= ~(o)’, where * denotes

complex conjugate. It then follows from (18) and (23) and the

fact that +(o) vanishes on C that

( +(0)2
J

– y2 ) ~ #0)”+ da = $dn+(o)” dl. (26)
A c

If we now substitute our expansions (21) and (22) into this

equation we obtain the final result that

which determines y(l) in terms of quantities found in the zeroth

approximation and agrees with the result found in [1].
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For most practical purposes it is sufficient to determine y to

this order of accuracy in order to calculate the attenuation in the

guide. If necessary, however, we can substitute this result back

into (24) in order to determine +(l) and so calculate the fields in

the guide to O(cl ). These fields then supply boundary conditions

via the continuity equations for the calculation of the next

approximation to the fields in the conductor, which in turn can

be used as boundary conditions for the determination of the next

approximation to the fields in the guide, and so on. In carrying

out this procedure the proper ordering of terms will be automatic

with the field equations in the form given here.

V. ~UMMARY

A consistent approximation scheme for lossy waveguides has

been developed which can, in a straightforward manner, be

extended to any order of accuracy desired. Although two small

parameters are involved in the expansion of the fields in the

guide and its walls, the field equations are shown to force the

correct ordering of parameters in this expansion.
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Expansions for the Capacitance of a Cross Concentric

with a C3rcle with an Application

HENRY J. RIBLET, LIFE FELLOW, IEEE

Abstract —Expansions are given for tJte capacitance per unit leagth for

the geometsy having a cross section in which an equiartned cross is

concentric with an external circle.

I. INTRODUCTION

Oberhettinger and Magnus [1, p. 61] have considered the
problem of determining the capacitance of a coaxial structure
whose outer conductor has a circular cross section while the cross
section of the inner conductor is a line through the axis. The
problem considered here differs in that the inner conductor has a
cross section which is a symmetric cross centered on the axis of
the outer circular conductor as shown in the z plane of Fig. 1.

The transformation

1()~=–_z+!
2Z

(1)

maps the upper left-hand quadrant of the circle in the z plane
onto the upper right-hand quadrant of the I plane of Fig. 1. Here
corresponding points on the boundaries of the two regions are
given the same alphabetical name. Then the upper right-hand
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quadrant of the t plane is mapped onto the upper half of the w

plane by the transformation

~=tz (2)

Here again, the same letter is used to denote corresponding

points. The capacitance ~ of the coaxial structure is four times

the capacitance, in the upper half w plane, between the line

segment fa and the infinite line segment, bg. This capacitance,
C, is given by the well-known formula [2, p. 58]

where, in our case,

Finally,

~= K(k)

K’(k’j
(3)

~2=(a-m@)

(g-u)(~-f) “
(4)

(5)

In this paper, two series for ~, one in terms of 8 and the other

in terms of p = 1 – 8, are given which have certain theoretical and

practical advantages. Not only do the series give the limiting

behavior of CO as 8 approaches O or 1 but they permit the direct

calculation of CO with sufficient accuracy for most engineering

applications without any resort to elliptic functions.

II. ANALYSIS

If the values fcw a, b, f, and g, given in the w plane of Fig. 1,

are substituted in (4), it is found that

882(1+84)
kz = —.

(1+8’)4 “
(6)

The values of (00 given in the middle row of Table I were

obtained by finding k2 from (6), for the given values of 8, and

then calculating the complete elliptic integrals, K and K‘ of (5),

using Landen’s transformation. To obtain an expansion for CO in

terms of 8, one may expaid (6) in terms of 82 to get

k2 = 881 1 –482 -t-1184 – 248t’ +4588 –76r31° + . .( - ) (7)

and then substitute in

so that finally

K’ 1

(

13 23
?r~=ln2-21n8-; 88+%816 +—tj24+

)
‘s32 +... .

96

(9)

Determining the coefficient of 832 in (9) in this way requires the

coefficients in (8) up to the coefficient of k32. Those not given in

[3, p. 1219] are provided in the Appendix.

In order to find the expansion for Co in powers of p, find k’2
from (6) and replace 8 with 1 – p. Then

1 – p/2
k’2 = p4——

l–p+p~/2
(10)
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